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Abstract

Tempo-Express is a case-based reasoning system
for tempo transformation of musical performances,
that preserves expressivity in the context of stan-
dard jazz themes. Expressive tempo transforma-
tions are a common manual operation in audio post-
processing tasks. A CBR system can be a useful
tool for automating this task.

Keywords: Expressive Music Performance, Case Based
Reasoning, Tempo Transformations, Performance annota-
tion.

1 Introduction
Tempo-Express is a case-based reasoning system for gener-
ating expressive tempo transformations in the context of stan-
dard jazz themes. As shown by[Desain and Honing, 1991],
changing the tempo of a given melody is a problem that can-
not be reduced to just applying a uniform transformation to
all the notes of a musical piece. When a human performer
plays a given melody at different tempos, she does not per-
form uniform transformations. On the contrary, the relative
importance of the notes will determine, for each tempo, the
performer’s decisions. For instance, if the tempo is very fast,
the performer will, among other things, tend to emphasize the
most important notes by not playing the less important ones.
Alternatively, in the case of slow tempos, the performer tends
to delay some notes and anticipate others.

In the development ofTempo-Express we are using the ex-
perience acquired in developing theSaxEx system[Arcos
and Ĺopez de Ḿantaras, 2001]. The goal ofSaxEx was also
to generate expressive music performances but the task was
centered on transforming a non expressive input performance
into an expressive new sound file taking into account the user
preferences regarding the desired expressive output charac-
terized along three affective dimensions (tender-aggressive,
sad-joyful, calm-restless). The task ofTempo-Express is to
perform tempo transformations with ‘musical meaning’ to an
already expressive input performance. That is, a recording
has to be re-performed at a user required tempo that can be
very different from the input tempo.

Tempo-Express is being implemented inNoos [Arcos and
Plaza, 1997; 1996], an object-centered representation lan-

guage designed to support the development of knowledge in-
tensive case based reasoning systems.

The paper is organized as follows: In section 2.1, we will
describe the musical analysis that is applied to the musical
scores. The annotation of the performances will be explained
in section 2.2. In sections 2.3–2.6, the case-based reasoning
system and it’s phases (retrieval, adaptation, retention) will
be explained. In section 3, we present the conclusions.

2 Tempo-Express
In this section we briefly present the mainTempo-Express
modules and the Inference flow (see Figure 1). The input
of Tempo-Express is a recording of a jazz performance at
a given tempoTi (a sound file), its corresponding score (a
MIDI file) and the desired output tempo. The score con-
tains the melodic and the harmonic information of the musical
piece and is analyzed automatically in terms of the Implica-
tion/Realization Model (see[Narmour, 1990]). The record-
ing is parsed by the performance analysis module that pro-
duces an XML file containing the performance melody seg-
mentation (onset points and durations of notes). Then, the
melody segmentation is compared to its corresponding score
in the annotation process (see the detailed description in sec-
tion 2.2). The ‘annotated’ performance and the desired out-
put tempoTo is the input for the case-based reasoning. The
task of the case-based reasoning modules is to determine a se-
quence of operations that achieves the desired tempo transfor-
mation with a musical expressivity that is appropriate for that
tempo, while maintaining as much as possible the expressiv-
ity that was present in the original performance. Finally, the
output of the system is a new version of the original melody,
at the desired tempo, generated by the synthesis process.

The performance analysis and synthesis processes have
been implemented by the Music Technology Group (MTG)
of the Pompeu Fabra University using signal spectral model-
ing techniques (see[Serraet al., 1997; Ǵomezet al., 2003]
for a detailed description).

2.1 Musical Analysis: Narmour’s
Implication/Realization Model

An intuition shared by many people is that appreciating mu-
sic has to do with expectation. That is, what we have al-
ready heard generates expectations of what is to come. Nar-
mour [Narmour, 1990] proposed a theory of cognition of
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Figure 1: General view ofTempo-Express modules.

melodies based on a set of basic grouping structures (see fig-
ure 2). These structures characterize patterns of melodic im-
plications (or expectations) that constitute the basic units of
the listener’s perception. Other resources emphasize or in-
hibit the perception of these melodic implications. These re-
sources fall into two categories:bottom-upinfluences, such as
duration and rhythmic patterns on the one hand, andtop-down
influences, such as the listener’s memory (of previously heard
musical material). The use of the Implication/Realization
(I/R) model provides a musical analysis of the melodic sur-
face of the piece.

The basic grouping structures are shown in figure 2 (from
[Narmour, 1991]). The two dimensions in the classifica-
tion of two (or possibly more) contiguous intervals are:
the continuation/change of registral direction, and the same-
ness/difference of interval sizes. For example, the first pattern
(calledP, for process) of figure 2 is a continuation of registral
direction, with similar (small) interval sizes. TheP structure
can also manifest itself through only one of the dimensions:
VP has the same registral direction, but dissimilar interval
sizes, andIP has similar interval sizes, but a reversed registral
direction. TheR (reversal) structure is a basic structure that
changes in both direction and interval size. Just likeP, R has
two variants (VR and IR) where the characteristic applies to
only one of the dimensions. Two special cases are firstly the
D structure where both interval sizes are zero (this implies
that the registral directions are lateral (rather than upward or
downward), and secondly theID, where registral directions
is inverted and the interval sizes are equal. Based on these
eight basic structures, many more derived structures can be
identified. See[Narmour, 1990] for a detailed description.

Based on the I/R model, we have built a parser for mono-
phonic melodies, that automatically generates the corre-
sponding sequences of I/R structures. The algorithm imple-
ments most of thebottom-uppart of the I/R model. Thetop-
downpart is not implemented at this moment. Nevertheless,
we believe that the I/R analyses generated by the parser have
a reasonable degree of validity (top-down interferences being
only occasional exceptions to the bottom-up rules) and are
useful for our purposes.

2.2 The Performance Annotation Process

When comparing a performance of a melody to the score of
that melody, a crucial problem is to identify which element
in the performance corresponds to each note of the score. Es-
pecially in jazz performances, which is the area on which we
will focus, this problem is not trivial, since jazz performers
often favor a ‘liberal’ interpretation of the score. This does
not only involve changes in expressive features of the score
elements as they are performed, but also omitting or adding
notes. Thus, one can normally not assume that the perfor-
mance contains a corresponding element for every note of the
score, neither that every element in the performance corre-
sponds to a note of the score. Thus, to make sense of the per-
formance in the light of the melody that was performed, some
kind of annotation of the performance will be needed. In
particular, a description of a musical performance could take
the form of a sequence of operations that are applied to the
score elements. These operations could make explicit both
the mapping of score elements to performance elements, and
the deviation of the expressive values (e.g. timing and dura-
tion) of the performance elements with respect to the mapped
score elements.

We use a variant of the edit distance (also known as Leven-
shtein distance[Levenshtein, 1966]) to generate an alignment
between scores and performances. The edit distance has been
used before in the performance-to-score mapping problem by
Dannenberg[Dannenberg, 1984] and Large[Large, 1993],
among others. This alignment can contain deletions, inser-
tions (1-to-0 and 0-to-1 mappings respectively), replacements
(1-to-1 mappings) and fragmentations and consolidations (1-
to-many and many-to-1 mappings respectively). An example
of such an alignment is shown in figure 3 (for simplicity, the
sequences consist of geometrical figures instead of score and
performance elements). To determine a preference among the
possible alignments, a cost is assigned to each edit operation.
The edit distance mechanism then considers all possible se-
quences of operations that transform the first sequence into
the second, and selects the one that has the lowest total cost.
This sequence of operations constitutes theoptimal alignment
between the two sequences under comparison.

Once the alignment between a score and its performance
is established, it is easy to derive the expressive deviations
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Figure 2: Eight of the basic structures of the I/R model.
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Figure 3: A possible alignment between two sequences of
geometrical figures. The operations in the alignment are re-
placement (R), deletion (D), insertion (I) and fragmentation
(F). The way in which the compared sequences are aligned
depends on the costs assigned to each of the edit operations.

of the performance elements from the score elements. This
alignment, together with the expressive deviations, forms the
annotation of the performance, to be stored in the case base.
(See[Arcoset al., 2003] for a more detailed description about
the annotation process.)

2.3 The Case Base

A case is represented as a complex structure embodying three
different kinds of knowledge: (1) the representation of the
musical score (notes and chords), (2) a musical model of the
score (automatically inferred from the score using Narmour’s
Implication/Realization model as background musical knowl-
edge as described in Section 2.1), and (3) a collection of an-
notated performances, as described in Section 2.2 For the
case acquisition, saxophone performances were recorded of
5 jazz standards, each consisting of about 4 distinct phrases.
The performances were played by a professional performer,
at about 11 different tempos per phrase. From this, the ini-
tial case base was constructed, containing 20 scores of musi-
cal phrases, each with about 11 annotated performances (i.e.
more than 5.000 performed notes).

2.4 The Retrieval Step

The retrieval mechanism is organized in three phases:

• In a first phase the input melody is compared with
the melodies of the case base using melodic similarity
measures for retrieving only those case melodies really
similar—For instance, given a slow ballad as input, we
are not interested in comparing it with be-bop themes.
To this end, similarities are computed between the input
melody and each of the melodies in the case base. The
similarities can be computed either using the note rep-
resentations of the melodies, or using other representa-
tions such as melodic contour representations, or the mu-
sical models derived from the melodies. Combinations
of these different measures can also be used to retrieve a

subset of melodies. In[Grachtenet al., 2002], a compar-
ison of various similarity measures is reported. It turns
out that a similarity measure based on note level rep-
resentations is not very discriminative when applied to
melodies that are very different (i.e. all phrases that are
not virtually identical, are assessed more or less equally
dissimilar). Therefore, it seems more promising to use
similarities between musical models or contour repre-
sentations for retrieving similar melodies from the case
base. The final output of this phase is a subset of a
melodies of the case base close to the input melody.
Only performances from these retrieved melodies will
be taken into account in the following phases.

• In a second phase, we try to find similar melodic frag-
ments for segments of the input melody. The input
melody is segmented based on the musical model that
was constructed for the melody (including musical in-
formation such as the metrical strengths of the notes). In
particular, I/R structures (or sequences of two or three
structures) usually coincide with melodic motifs. For
each of these segments, the most similar parts of the re-
trieved melodies can be selected (again using a similarity
measure on either of the melodic representations). The
result is that for each segment/motif of the input melody
a set of melodic fragments is available, each fragment
with one or more performance annotations.

• Finally, in the third phase the performances that were re-
trieved for each segment of the input melody are ranked
using a similarity measure for the performance annota-
tions. The idea behind this step is to use the input per-
formance as a guide for how the input melody should
be performed at the desired tempo. For illustration, say
that an input performancePin of a melodic segmentM
at tempoTin was given and a new performancePout of
M at the desired tempoTout must be generated. Sup-
pose that there is a retrieved melodic fragment that has
a performanceP1 at tempoTi close toTin and in addi-
tion, it has a performanceP2 at Tj close to the desired
tempoTout. Then, if performancePin is similar toP1,
we assume thatP2 is a good basis for constructing per-
formancePout at tempoTout. The setting is shown dia-
grammatically in figure 4. In this way, performances at
tempos close to the desired tempo can be selected and
ordered according to their expected relevance for con-
structing the solution.

In conclusion, the output of the retrieval step is an ordered
collection of candidate annotations for each segment/motif in
the input melody.



perform
ances

melody 1 melody 2 melody 3

?

te
m

po

input melody M

jT

similar

P 

@

@

P 

inT

Toutout

in
P1 @ T i

P2 @

retrieved similar melodic fragments

Figure 4: A diagrammatic representation of the third phase of
the retrieval step. Melodies 2 and 3 do not contribute to the
solution, either because they have no performances at tempos
close toTin or Tout, or their performances at tempos close to
Tin are not similar toPin.

2.5 The Adaptation Step
The adaptation mechanism is being implemented usingcon-
structive adaptation[Plaza and Arcos, 2002], a generative
technique for reuse in CBR systems. The adaptation mecha-
nism deals with two kinds of criteria: local criteria and coher-
ence criteria. Local criteria deal with the transformations to
be performed to each note—i.e. how retrieved candidate an-
notations can be reused in each input note. Coherence crite-
ria try to balance smoothness and hardness. Smoothness and
hardness are basically contradictory: the first tends to iron
out strong deviations with respect to the score, while the sec-
ond tends to favor strong deviations. The resulting expressive
performance is a compromise between the smoothness and
hardness criteria, with the aim of keeping an overall balance
pleasant to the ear.

2.6 The Retain Step
The user decides whether or not each new tempo performance
should be added to the memory of cases. The newly added
tempo performances will be available for the reasoning pro-
cess in future problems.

3 Conclusions
We have briefly described a case-based reasoning approach
to tempo transformations of musical performances that pre-
serves the expressivity of the input performances. The most
fundamental step, the annotation process, has been com-
pleted. This process allows to build the case base. We are
now developing the remaining case-based reasoning compo-
nents. As future work we are also planning to consider an
alternative functionality of the system consisting in generat-
ing an expressive tempo performance just from the score (i.e.
without an initial performance) instead of transforming an ex-
isting one.
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