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ABSTRACT

The performance of music usually involves a great deal of
interpretation by the musician. In classical music, the final
ritardando is a good example of the expressive aspect of
music performance. Even though expressive timing data
is expected to have a strong component that is determined
by the piece itself, in this paper we investigate to what de-
gree individual performance style has an effect on the tim-
ing of final ritardandi. The particular approach taken here
uses Friberg and Sundberg’s kinematic rubato model in or-
der to characterize performed ritardandi. Using a machine-
learning classifier, we carry out a pianist identification task
to assess the suitability of the data for characterizing the in-
dividual playing style of pianists. The results indicate that
in spite of an extremely reduced data representation, when
cancelling the piece-specific aspects, pianists can often be
identified with accuracy above baseline. This fact suggests
the existence of a performer-specific style of playing ritar-
dandi.

1. INTRODUCTION

Performance of music involves a great deal of interpre-
tation by the musician. This is particularly true of piano
music from the Romantic period, where performances are
characterized by large fluctuations of tempo and dynam-
ics. In music performance research it is generally acknowl-
edged that, although widely used, the mechanical perfor-
mance (with a constant tempo throughout the piece) is not
an adequate norm when studying expressive timing, since
it is not the way a performance should naturally sound.

As an alternative, models of expressive timing could be
used, as argued in [18]. However, only few models exist
that deal with expressive timing in general [2, 16]. Due
to the complexity and heterogeneity of expressive timing,
most models only describe specific phenomena, such as the
timing of grace notes [15] or the final ritardando.

Precisely, the final ritardando —the slowing down to-
ward the end of a musical performance to conclude the
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piece gracefully— is one of the clearest manifestations of
expressive timing in music. Several models have been pro-
posed [3,14] in the related literature to account for its spe-
cific shape. Those models generally come in the form of a
mathematical function that describes how the tempo of the
performance changes with score position.

In a previous empirical study by Grachten et al. [4] on
the performance of final ritardandi, a kinematic model [3]
was fitted to a set of performances. Even though some sys-
tematic differences were found between pianists, in gen-
eral the model parameters tend to reflect primarily aspects
of the piece rather than the individual style of the pianist
(i.e. expressive timing data is expected to have a strong
component that is determined by piece-specific aspects).

This fact is relevant in a recurrent discussion in the field
of musicology, about which factor (the piece or the per-
former) mostly influences a performance [9]. Some experts
argue that the performance should be preceded of a thor-
ough study of the piece; while others indicate that the per-
sonal feeling of music is the first and main point to be con-
sidered. Works supporting both views can be found in [12].
A study by Lindström et al. [7] involving a questionnaire,
showed that music students consider both the structure of
the piece and the feelings of the performer as relevant in a
performance.

The current paper extends that previous work by Grachten
et al., by investigating whether or not canceling piece-specific
aspects leads to a better performer characterization. Musi-
cologically speaking, the validation of this hypothesis im-
plies that performers’ signatures do exist in music inter-
pretation regardless of the particular piece. We present a
study of how final ritardandi in piano works can be used
for identifying the pianist performing the piece. Our pro-
posal consists in applying a model to timing data, normal-
izing the fitted model parameters per piece and searching
for performer-specific patterns.

Performer characterization and identification [8, 13] is
a challenging task since not only the performances of the
same piece by several performers are compared, but also
the performance of different pieces by the same performer.
Opposed to performer identification (where performers are
supposed to have distinctive ways of performing) is piece
identification —which requires the structure of the piece
to imply a particular expressive behavior, regardless of the
performer.

A further implication of this work would be that, when



an estimation can be made of the prototypical performance
based on the musical score, this estimation could be a use-
ful reference for judging the characteristics of performances.
This knowledge can also allow the artificial interpretation
of musical works by a computer in expressive and realistic
ways [17].

This paper is organized as follows: Section 2 describes
the dataset used for this study, including the original timing
data and the model we fit them to. Section 3 deals with the
data processing procedure. Results of the pianist classifi-
cation task are presented and discussed in Section 4, while
Section 5 states conclusions and future work.

2. DATA

The data used in this paper come from measurements of
timing data of musical performances taken from commer-
cial CD recordings of Chopin’s Nocturnes. This collection
has been chosen since these pieces exemplify classical pi-
ano music from the Romantic period, a genre that is char-
acterized by the prominent role of expressive interpretation
in terms of tempo and dynamics. Furthermore, Chopin’s
Nocturnes is a well-known repertoire, performed by many
pianists, and thus facilitating large scale studies.

As explained before, models of expressive timing are
generally focused in a certain phenomenon. In our study,
we will focus on the final ritardando of the pieces. Hence,
we select those Nocturnes whose final passages have a rel-
atively high note density and are more or less homoge-
neous in terms of rhythm. With these constraints we avoid
the need to estimate a tempo curve from only few interon-
set intervals, and reduce the impact of rhythmic particular-
ities on the tempo curve.

In particular, we used ritardandi from the following pieces:
Op. 9 nr. 3, Op. 15 nr. 1, Op. 15 nr. 2, Op. 27 nr. 1, Op. 27
nr. 2 and Op. 48 nr. 1. In two cases (Op. 9 nr. 3 and Op. 48
nr. 1), the final passage consists of two clearly separated
parts, being both of them performed individually with a
ritardando. These ritardandi were treated separately —
namely rit1 and rit2. So that, we have 8 different ritardandi
for our study.

The data were obtained in a semi-automated manner,
using a software tool [10] for automatic transcription of the
audio recordings. From these transcriptions, the segments
corresponding to the final ritardandi were then extracted
and corrected manually by means of Sonic Visualiser, a
software tool for audio annotation and analysis [1].

The dataset in this paper is a subset of that used in
previous work [4], as we are only considering those pi-
anists from whom all eight recordings are available. Ta-
ble 1 shows the names of these pianists and the year of
their recordings. Hence, the dataset for the current study
contains a total amount of 136 ritardandi from 17 different
pianists.

2.1 Friberg & Sundberg’s kinematic model

As mentioned in Section 1, we wish to establish to what
degree the specific form of the final ritardando in a musical
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Table 1. Performer and year of the recordings analyzed in
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Figure 1. Examples of tempo curves generated by the
model using different values of parameters w and q. In
each plot, the x and y axis represent score position and
tempo respectively, both in arbitrary units.

performance is dependent on the identity of the performing
pianist. We address this question by fitting a model to the
data, and investigating the relation between the piece/pianist
identity and the parameter values of the fitted model. To
such a task, we employ the kinematic model by Friberg &
Sundberg [3].

This model is based on the hypothesized analogy of mu-
sical tempo and physical motion, and is derived from a
study of the motion of runners when slowing down. From
a variety of decelerations by various runners, the deceler-
ations judged by a jury to be most aesthetically pleasing
turned out to be those where the deceleration force is held
roughly constant. This observation was implying that ve-
locity was proportional to square root function of time, and
to a cubic root function of position. Equating physical po-
sition to score position, Friberg and Sundberg used this ve-
locity function as a model for tempo in musical ritardandi.
Thus, the model describes the tempo v(x) of a ritardando
as a function of score position x:

v(x) = (1 + (wq − 1)x)1/q (1)

The parameter q is added to account for variation in cur-
vature, as the function is not necessarily a cubic root of
position. The parameter w represents the final tempo, and
was added since the tempo in music cannot reach zero. The
model can be fitted to ritardandi performed by particular
pianists by means of its parameters.

Parameters w and q generate different plots of tempo
curves (see Figure 1). Values of q > 1 lead to convex
tempo curves, whereas values of q < 1 lead to concave
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Figure 2. Original data representation in the w-q plane

curves. The parameter w determines the vertical end posi-
tion of the curve.

Even though this kind of models are incomplete as they
ignore several musical characteristics [6], the kinematic
model described above was reported to predict the evolu-
tion of tempo during the final ritardando quite accurately,
when matched to empirical data [3]. An additional advan-
tage of this model is its simplicity, both conceptually (it
contains few parameters) and computationally (it is easy
to implement).

The model is designed to work with normalized score
position and tempo. More specifically, the ritardando is
assumed to span the score positions in the range [0,1], and
the initial tempo is defined to be 1. Although in most cases
there is a ritardando instruction written in the score, the ri-
tardando may start slightly before or after this instruction.
When normalizing, we must assure that normalized posi-
tion 0 coincide with the actual start of the ritardando. A
manual inspection of the data showed that the starting po-
sition of the ritardandi strongly tended to coincide among
pianists. For each piece, the predominant starting position
was determined and the normalization of score positions
was done accordingly.

The model is fitted to the data by non-linear least-squares
fitting through the Levenberg-Marquardt algorithm 1 , us-
ing the implementation from gnuplot. The model fitting is
applied to each performance individually, so for each com-

1 The fitting must be done by numerical approximation since the model
is non-linear in the parameters w and q

bination of pianist and piece, three values are obtained: w,
q and the root mean square of the error after fitting (serving
this value as a goodness-of-fit measure).

At this point, we can represent each particular ritar-
dando in the corpus as a combination of those two attributes:
w and q. In Figure 2 2 , the values obtained from fitting are
displayed as a scatter plot on the two-dimensional attribute
space q versus w. The whole dataset —136 instances—
is shown in this plot. Each point location correspond to a
certain curve with parameters w and q. We refer the reader
to Figure 1 to visualize the shape of different combination
of parameters.

As can be seen from Figure 2, there are no clusters that
can be easily identified from this representation. Hence,
the performer identification task using these original data
is expected to have a low success rate.

3. METHOD

In Section 1, we already mentioned that the expressive tim-
ing data is expected (as stated in [4]) to have a strong com-
ponent that is determined by piece-specific aspects such as
rhythmical structure and harmony. In order to focus on
pianist-specific aspects of timing, it would be helpful to
remove this piece-specific component.

Let X be the set of all instances (i.e. ritardando perfor-
mances) in our dataset. Each instance x ∈ X is a duple
(w, q). Given a ritardando i, Xi is the subset of X that

2 this figure is best viewed in color



contains those instances x ∈ X corresponding to that par-
ticular ritardando.

In order to remove the piece-specific components, we
propose to apply a linear transformation to the 2-attribute
representation of ritardandi. This transformation consists
in calculating the performance norm for a given piece and
subtracting it from the actual examples of that piece. To
do so, we first group the instances according to the piece
they belong. We then calculate the centroid of each group
(e.g. mean value between all these instances) and move it
to the origin, moving consequently all the instances within
that group.

We are aware that modelling the performance norm of
a given ritardando as the mean of the performances of that
ritardando is not the only option and probably not the best
one. In fact, which performance is the best and which one
is the most representative is still an open problem with no
clear results. Moreover, several performance norms can be
equally valid for the same score. In spite of these difficul-
ties, we chose to use the mean to represent the performance
norm, for its simplicity and for the lack of an obvious al-
ternative.

Two approaches were then devised in order to calculate
that performance norm. In the first one, the mean perfor-
mance curve is calculate as a unweighted mean of the at-
tributes w and q (see Equation 2); whereas in the second
one, fit serves to weight the mean (see Equation 3).

In the first approach, the performance norm for a given
ritardando i can be calculated as:

normi =

∑
xi∈Xi

xi

|Xi|
(2)

In the second approach, it is calculated as a weighted
mean, where fiti stands for the fit value of instance xi:

normi =

∑
xi∈Xi

xifiti∑
fiti

(3)

In either case, all instances xi are then transformed into
x′
i by subtracting the corresponding performance norm:

x′
i = xi − normi (4)

X ′ would be then the dataset that contains all x′. Af-
ter this transformation, all x′ contain mainly information
about the performer of the ritardando, as we have removed
the common component of the performances per piece.

4. EXPERIMENTATION

In order to verify whether pianists have a personal way
of playing ritardandi, independent of the piece they play,
we have designed a classification experiment with different
conditions, in which performers are identified by their ri-
tardandi. The ritardandi are represented by the fitted model
parameters. In one condition, the data instances are the
set X , i.e. the fitted model parameters are used as such,
without modification. In the second and third conditions,

Figure 3. % success rate in the performer identification
task using the whole dataset, with different k-NN classi-
fiers. Baseline value (5.88%) from random classification is
also shown

the piece-specific component in every performance is sub-
tracted (data set X ′). The second condition uses the un-
weighted average as the performance norm, the third con-
dition uses the weighted average.

Note that accurate performer identification in this setup
is unlikely. Firstly the current setting, in which the number
of classes (17) is much higher than the number of instances
per class (8), is rather austere as a classification problem.
Secondly, the representation of the performer’s rubato by
a model with two parameters is very constrained, and is
unlikely to capture all (if any) of the performer’s individual
rubato style. Nevertheless, by comparing results between
the different conditions, we hope to determine the presence
of individual performer style independent of piece.

As previously explained, the training instances (ritar-
dandi of a particular piece performed by a particular pi-
anist) consist of two attributes (w and q) that describe the
shape of the ritardando in terms of timing. Those attributes
come from matching the original timing data with the kine-
matic model previously cited.

The pianist classification task is executed as follows.
We employ k-NN (Nearest Neighbor) classification, with
k ∈ {1, . . . , 7}. The target concept is the pianist in all the
cases, and two attributes (w and q) are used. For validation,
we employ leave-one-out cross-validation over a dataset of
136 instances (see Section 2). The experiments are carried
out by using the Weka framework [5].

Figure 3 shows the results for the previously described
setups, employing a range of k-NN classifiers with differ-
ent values of k ∈ {1, . . . , 7}. We also carry out the clas-
sification task using the original data (without the transfor-
mation) that were shown in Figure 2, in order to compare
the effect of the transformation.

The first conclusion we can extract from the results is
that the success rate is practically always better when trans-
forming the data than when not. In other words, by remov-
ing the (predominant) piece-specific component, it gets eas-
ier to recognize performers. This is particularly interesting
as it provides evidence for the existence of a performer-
specific style of playing ritardandi, which was our initial



hypothesis.
Note however, that the success rate is not so good to

allow this representation for being a suitable estimation of
the performer of a piece, even in the best case. A model
with only two parameters cannot comprise the complexity
of a performer expressive fingerprint. Although improving
performer identification is an interesting problem, that is
not the point of this work.

As can be seen, employing a weighted mean of w and
q for calculating the performance norm of a piece —being
fit the weight— leads to better results when k is small (i.e.
k < 3). However, this approach, which is methodologi-
cally the most valid, does not make a remarkable differ-
ence with respect to the original data for larger values of
k.

An interesting and unexpected result is that the transfor-
mation with the unweighted mean (see equation 2), gives
better results for medium-large k values. The lower results
for smaller k could be explained by the fact that instances
with a low fit (which are actually noisy data), interfere with
the nearest-neighbor classification process. The better re-
sults for higher k suggest that in the wider neighborhood
of the instance to be classified, the instances of the correct
target dominate —and thus that the noise due to low fit is
only limited.

Note also that this approach is more stable with respect
to the size of k than the original or the weighted ones. It
also outperforms the random classification baseline —that
is 5.88% with 17 classes— for all the different values of k.

Further experiments show that those are the trends for
those two different transformation of the data. Employing
the weighted mean leads to the highest accuracy using a 1-
NN classifier, but it quickly degrades as k is increased. On
the other hand, an unweighted mean leads to more stable
results, with the maximum reached with an intermediate
number of neighbors.

Although (as expected with many classes, few instances
and a simplistic model) the classification results are not sat-
isfactory from the perspective of performer identification,
the improvement that transforming the data (by removing
piece-specific aspects) gives in classification results, sug-
gests that there is a performer-specific aspect of rubato tim-
ing. Even more, it can be located specifically in the curva-
ture and depth of the rubato (w and q parameters).

5. CONCLUSIONS AND FUTURE WORK

Ritardandi in musical performances are good examples of
the expressive interpretation of the score by the pianist.
However, in addition to personal style, ritardando perfor-
mances tend to be substantially determined by the musical
context they appeared in. Because of this fact, we propose
in this paper a procedure for canceling these piece-specific
aspects and focus on the personal style of pianists.

To do so, we make use of collected timing variations
during ritardando in the performances of Chopin Nocturnes
by famous pianists. We obtain a two-attributes (w,q) rep-
resentation of each ritardando, by fitting Friberg and Sund-
berg’s kinematic model to the data.

A performer identification task was carried out using
k-Nearest Neighbor classification on, comparing the (w,q)
representation to another condition in which average w and
q values per piece are subtracted from each (w,q) pair.

The results indicate that in even in this reduced repre-
sentation of ritardandi, pianists can often be identified by
the tempo curve of the ritardandi above baseline accuracy.
More importantly, removing the piece-specific component
in the w and q values leads to better performer identifica-
tion.

This suggests that even very global features of ritar-
dandi, such as its depth (w) and curvature (q), carry some
performer-specific information. We expect that a more de-
tailed representation of the timing variation of ritardandi
performances will reveal more of the individual style of
pianists.

A more detailed analysis of the results is necessary to
answer further questions. For instance, do all pianists have
a quantifiable individual style or only some? Also, there is
a need for alternative models of rubato (such as the model
proposed by Repp [11]), to represent and study ritardandi
in more detail.

Finally, we intend to relate our empirical findings with
the musicological issue of the factors affecting music per-
formances. Experiments supporting whether or not the
structure of the piece and the feelings of the performer are
present in renditions could be of interest to musicologists.
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